

Note

This code is intended as utilities mostly to help developers
and Tor experts interact with their systems. Nobody has
audited it for anonymitiy leaks (or worse). Use at your own
risk.

[image: ReadTheDocs]
 [https://carml.readthedocs.io/en/latest/]
carml

carml is a command-line tool to query and control a running Tor
(including Tor Browser Bundle). You can do things like:

	list and remove streams and circuits;

	monitor stream, circuit and address-map events;

	watch for any Tor event and print it (or many) out;

	monitor bandwidth;

	run any Tor control-protocol command;

	pipe through common Unix tools like grep, less, cut, etcetera;

	download TBB through Tor, with pinned certs and signature checking;

	…even spit out and run xplanet configs (with router/circuit markers)!

It is written in Python and uses Tor’s control-port via the txtorcon
library [https://txtorcon.readthedocs.org].

Documentation at: carml.rtfd.org [https://carml.readthedocs.org/en/latest/] or carmlion6vt4az2q.onion/ [http://carmlion6vt4az2q.onion/]
Code at: github.com/meejah/carml [https://github.com/meejah/carml/]

In some ways, carml started as a dumping-ground for things I
happened to make Tor do at least once from Python code. Are there
things you wish you could easily make Tor do from the command-line?
File an enhancement bug at GitHub!

carml is also easy to extend, even with system- or virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/]- installed
packages.

Feedback is appreciated – pull-requests and bug-reports (including
feature enhancements) welcome at GitHub [https://github.com/meejah/carml] or you can contact me in #tor-dev
on OFTC or via meejah at meejah dot
ca with the public-key contained in the source.

Some Quick Examples

(venv)meejah@machine:~$ carml circ --list
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Circuits:
 809: BUILT 29 minutes ago carmlfake0->~Unnamed->lobstertech
 810: BUILT 29 minutes ago ~carmelfake1->~toxiroxi->~SECxFreeBSD64
 811: BUILT 5 minutes ago carmelfake2->torpidsDEinterwerk->~rainbowwarrior
 813: BUILT 24 seconds ago carmlfake0->~arkhaios1->~IPredator
(venv)meejah@machine:~$ carml circ --delete 810
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Deleting circuit "810"...
...circuit 172 gone.
(venv)meejah@machine:~$ echo "hello world" | carml pastebin --once
12 bytes to share.
Launching Tor: connected.
People using Tor Browser Bundle can find your paste at (once the descriptor uploads):

 http://ok2byooigb4v53be.onion

If you wish to keep the hidden-service keys, they're in (until we shut down):
/dev/shm/tortmp6eHPg4
Awaiting descriptor upload...
Descriptor uploaded; hidden-service should be reachable.
Mon Jul 21 13:54:38 2014: Serving request to User-Agent "curl/7.37.0".
Shutting down.
(venv3)meejah@machine:~$ carml tbb
Getting recommended versions from "http://expyuzz4wqqyqhjn.onion/projects/torbrowser/RecommendedTBBVersions".
 7.5.5, 7.5.5-MacOS, 7.5.5-Linux, 7.5.5-Windows, 7.5.6, 7.5.6-MacOS,
 7.5.6-Linux, 7.5.6-Windows, 8.0a8, 8.0a8-MacOS, 8.0a8-Linux,
 8.0a8-Windows, 8.0a9, 8.0a9-MacOS, 8.0a9-Linux, 8.0a9-Windows
Note: there are alpha versions available; use --alpha to download.
Downloading "tor-browser-linux64-7.5.5_en-US.tar.xz.asc" from:
 http://rqef5a5mebgq46y5.onion/torbrowser/7.5.5/tor-browser-linux64-7.5.5_en-US.tar.xz.asc
Downloading "tor-browser-linux64-7.5.5_en-US.tar.xz" from:
 http://rqef5a5mebgq46y5.onion/torbrowser/7.5.5/tor-browser-linux64-7.5.5_en-US.tar.xz
[▏] - 0.0 of 65.8 MiB (1s remaining)
[▋] - 6.6 of 65.8 MiB (153s remaining)
[█▏] - 13.2 of 65.8 MiB (137s remaining)
[█▋] - 19.8 of 65.8 MiB (120s remaining)
[██▏] - 26.4 of 65.8 MiB (102s remaining)
[██▋] - 32.9 of 65.8 MiB (85s remaining)
[███▏] - 39.5 of 65.8 MiB (70s remaining)
[███▋] - 46.1 of 65.8 MiB (55s remaining)
[████▏] - 52.7 of 65.8 MiB (38s remaining)
[████▋] - 59.3 of 65.8 MiB (19s remaining)
[█████] - 65.8 of 65.8 MiB (0s remaining)
0.32 MiB/s
gpg: assuming signed data in 'tor-browser-linux64-7.5.5_en-US.tar.xz'
gpg: Signature made Sat 09 Jun 2018 06:42:37 AM MDT
gpg: using RSA key D1483FA6C3C07136
gpg: Good signature from "Tor Browser Developers (signing key) <torbrowser@torproject.org>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: EF6E 286D DA85 EA2A 4BA7 DE68 4E2C 6E87 9329 8290
 Subkey fingerprint: A430 0A6B C93C 0877 A445 1486 D148 3FA6 C3C0 7136
Signature is good.
Extracting "tor-browser-linux64-7.5.5_en-US.tar.xz"...
 decompressing...
 20% extracted
 40% extracted
 60% extracted
 80% extracted
 100% extracted
Tor Browser Bundle downloaded and extracted.
running: ./tor-browser_en-US/Browser/start-tor-browser

License

carml is public domain. See unlicense.org [http://unlicense.org/] for more information.

	Installing carml
	PyPI

	Development/Source

	Tor Setup

	General Options
	--connect, -c

	--quiet, -q

	--info, -i

	--color, C

	--timestamps, -t

	--debug, -d

	The Subcommands
	onion

	pastebin

	copybin

	downloadbundle

	monitor

	stream

	xplanet

	cmd

	circ

	newid

	events

	relay

	Development

	HOWTOs
	Ensure Your Relay Is In Consensus

	Releases
	master

	18.3.0

	18.2.0

	18.1.0

	18.0.0

	17.4.0

	17.3.0 and earlier

	0.0.0 - 0.0.6

Installing carml

Note (for PyPI or development installs) you’ll need to install
libffi and liblzma development libraries. How to do this on
various architectures (please send missing ones!):

	Debian + Ubuntu: apt-get install build-essential python-dev python-virtualenv libffi-dev liblzma-dev.

PyPI

Once you have libraries installed as above, you should be able to do a
simple pip install carml. It’s also possible to point to the
.whl file (e.g. after signature verification).

It is recommended to use virtualenv to try without affecting
system packages:

virtualenv venv
. ./venv/bin/activate
pip install carml

Development/Source

From a fresh clone (git clone https://github.com/meejah/carml.git)
type make venv. Then activate your new virtualenv with source
./venv/bin/activate and then pip install --editable . which
should install all the dependencies (listed in requirements.txt).

To do this and use peep, you need pip version 6.1.1. So, you you
can try something like this (from the root of a fresh clone):

virtualenv venv
. ./venv/bin/activate
pip install --upgrade pip setuptools # esp. for Debian
pip install --editable .

Dependencies:

	txtorcon [https://txtorcon.readthedocs.org]

	humanize [https://github.com/jmoiron/humanize]

	ansicolors [https://github.com/verigak/colors/]

	PyOpenSSL [https://github.com/pyca/pyopenssl]

	txsocksx [https://github.com/habnabit/txsocksx]

	backports.lzma [https://github.com/peterjc/backports.lzma]

Tor Setup

For Tor setup, make sure you have at least the following in
/etc/tor/torrc:

CookieAuthentication 1
CookieAuthFileGroupReadable 1
ControlPort 9051
corresponding carml option: "--connect tcp:127.0.0.1:9051"

Or, if you prefer Unix sockets (recommended):

CookieAuthentication 1
ControlSocketsGroupWritable 1
ControlSocket /var/run/tor/control
corresponding carml option: "--connect unix:/var/run/tor/control"

The port or unix-socket can obviously be whatever; the above are Tor’s
defaults on Debian. The Tor Browser Bundle defaults to using 9151 for
the control socket (and DOES use cookie authentication by default).

On Debian/Ubuntu you need to be part of the debian-tor group. To
check, type groups and verify debian-tor is on the list. If
not, add yourself (as root, do):

usermod username --append --groups debian-tor

If you changed Tor’s configuration, don’t forget to tell it (as
root):

service tor reload

General Options

The carml command itself takes a few options that are common to
all sub-commands.

--connect, -c

How to connect to Tor. This accepts a Twisted endpoint client string [http://twistedmatrix.com/documents/current/api/twisted.internet.endpoints.clientFromString.html]
as well as just a port. The default is localhost:9151 (Tor
Browser Bundle [https://www.torproject.org/download/download-easy.html.en]
default). Some examples:

$ carml --connect 9151
$ carml --connect 127.0.0.1:9051
$ carml --connect tcp:port=9051:host=127.0.0.1

If you use password authentication, you can supply one with
--password or -p. If you’re on the same machine, use cookie
authentication instead.

--quiet, -q

As little output as possible on standard out. Warnings may still be
printed on standard error.

--info, -i

Print Tor version when we connect, and whether it is dormant or not.

--color, C

Whether to output colors or not. Can be auto (the default), no
or always. You can also use the separate option --no-color
which is the same as --color=no

--timestamps, -t

Prepend messages with a timestamp.

--debug, -d

If there’s an error, print the stack trace out along with the error
message; could be useful for bug-reports and development.

The Subcommands

Similar to programs like git, the real functionality of carml is
in the sub-commands. They all take their own options (but obey global
options listed above). You can get any help on a command with the
help subcommand, like: carml help subcommand

	onion

	pastebin

	copybin

	downloadbundle

	monitor

	stream

	xplanet

	cmd

	circ

	newid

	events

	relay

onion

This command starts an Onion Service on the connected Tor whose
livetime is tied to this process (when carml onion exits, the Onion
Service will be removed from Tor).

You may forward more than one port which might be useful for e.g. an
HTTP and Git server on the same Onion address. The “local” portion may
include an IP address and port or a unix-domain socket.

Examples

Forward both “80” and “9418” on a version 3 service. This will forward
an incoming request on port 80 to 127.0.0.1:80 (and 9418 to
127.0.0.1:9418) and is the simplest way to set up a service:

carml onion --port 80 --port 9418

If you are running the other services in containers or similar,
perhaps they are on different (but still local) IP addresses. Note
that we’re also forward “80” to “8888” here, which is fine:

carml onion --port 80:192.168.0.123:8888 --port 9418:192.168.0.123:9418

You may also run services via unix sockets. If your other services are
on the same machine, this is the safest and fastest way to forward:

carml onion --port 80:unix:/var/run/nginx_sock --port 9418:unix:/var/run/git_sock

pastebin

This launches a new hidden-service to share some data as the
text/plain MIME type via a Twisted Web server. By default, the
data to share is read from stdin. You may also use the option
--file (-f) to share a single file instead.

To use stealth authentication on your hidden-service, you can pass the
--keys (-k) option which specifies how many authentication
cookies to create. This will print out the commands you can send
(securely!) to the people you want to share
with.

If you wish to serve an entire hierarchy of files as a Web site,
instead see instructions at txtorcon [https://txtorcon.readthedocs.org/en/latest/howtos.html#endpoints-enable-tor-with-any-twisted-service]
(would look like twistd web --port "onion:80" --path ~/public_html
with txtorcon installed).

A similar alternative is also onionshare [https://onionshare.org/]
for diverse file-types on many OSes. OnionShare also comes with a GUI.

Note

Note that the hidden-service private keys are in a freshly created
temporary directory (TMPDIR is honoured) and that you must
save them yourself (by copying them somewhere) before you end (e.g
with Control-C) the carml pastebin command, which deletes the
tempdir (including the new keys).

If you want to see what it will look like to the people you’re sharing
the link with, use --dry-run (-d) which starts a local
listener only (i.e. doesn’t launch a Tor, nor set up an actual hidden
service). This is preferable to actually-launching a service just to
test it.

Examples

$ export TMPDIR=/dev/shm
$ echo "hello hidden-serice world" | carml pastebin
25 bytes to share.
Launching Tor: connected.
People using Tor Browser Bundle can find your paste at (once the descriptor uploads):

 http://ok2byooigb4v53be.onion

If you wish to keep the hidden-service keys, they're in (until we shut down):
/dev/shm/tortmp6eHPg4
Awaiting descriptor upload...
Descriptor uploaded; hidden-service should be reachable.
Mon Jul 21 13:54:38 2014: Serving request to User-Agent "curl/7.37.0".
^CShutting down.
$

If you used the stealth-authentication version, it might look like this:

$ carml pastebin -f README.rst --keys 5
4573 bytes to share with 5 authenticated clients.
Launching Tor.
[▋] Connecting to directory server
[█▏] Finishing handshake with directory server
[█▋] Establishing an encrypted directory connection
[██▏] Asking for networkstatus consensus
...
[███████▊] Loading relay descriptors
[███████▉] Loading relay descriptors
[████████▏] Connecting to the Tor network
[█████████▏] Establishing a Tor circuit
[██████████] Done
[██████████] Waiting for descriptor upload...
[██████████] At least one descriptor uploaded.
You requested stealth authentication.
Tor has created 5 keys; each key should be given to one person.
They can set one using the "HidServAuth" torrc option, like so:

 HidServAuth ww2ufwkgxb2kag6t.onion ErQPDEHdNNprvWYCA2vTLR
 HidServAuth f5kb64pe3nygyplx.onion HeemYe0TIoOzU/WkjJwP3R
 HidServAuth ywhbfzepvss5hecm.onion 8JcZKcS8YQXMuYBF/G1z8x
 HidServAuth pow2d55j6ezrruib.onion jK6/yXZ2R7xDsf3sm/PyVh
 HidServAuth t7gnlwzw4hjxc45z.onion ezUZBaPmFYSzrGeZXYJfGh

Alternatively, any Twisted endpoint-aware client can be given
the following string as an endpoint:

 tor:ww2ufwkgxb2kag6t.onion:authCookie=ErQPDEHdNNprvWYCA2vTLR
 tor:f5kb64pe3nygyplx.onion:authCookie=HeemYe0TIoOzU/WkjJwP3R
 tor:ywhbfzepvss5hecm.onion:authCookie=8JcZKcS8YQXMuYBF/G1z8x
 tor:pow2d55j6ezrruib.onion:authCookie=jK6/yXZ2R7xDsf3sm/PyVh
 tor:t7gnlwzw4hjxc45z.onion:authCookie=ezUZBaPmFYSzrGeZXYJfGh

For example, using carml:

 carml copybin --onion tor:ww2ufwkgxb2kag6t.onion:authCookie=ErQPDEHdNNprvWYCA2vTLR
 carml copybin --onion tor:f5kb64pe3nygyplx.onion:authCookie=HeemYe0TIoOzU/WkjJwP3R
 carml copybin --onion tor:ywhbfzepvss5hecm.onion:authCookie=8JcZKcS8YQXMuYBF/G1z8x
 carml copybin --onion tor:pow2d55j6ezrruib.onion:authCookie=jK6/yXZ2R7xDsf3sm/PyVh
 carml copybin --onion tor:t7gnlwzw4hjxc45z.onion:authCookie=ezUZBaPmFYSzrGeZXYJfGh

copybin

This command downloads the contents of a carml pastebin.

Mostly it exists because there’s not a good way to specify
stealth-authentication cookies to commands like curl or similar.

The only option is --service which is a Twisted endpoint string
describing the service. Note that the “tor:…” string can be used
with any Twisted program that uses client endpoint strings (see
clientFromString [http://twistedmatrix.com/documents/current/api/twisted.internet.endpoints.html#clientFromString]).

This is experimental: you’ll need to get a txtorcon from the
stealth-authentication branch; pip install -e
git+https://github.com/meejah/txtorcon.git@stealth-authentication#egg=txtorcon)

This will end up looking something like this:

$ carml copybin -s tor:ccsq7wrrm2ejkhmg.onion:authCookie=POYAUUZf4O28iJM0ZpIiwx

downloadbundle

Note

This command requires the optional txsocksx [https://github.com/habnabit/txsocksx] library to be
installed. Simply a pip install txsocksx

The downloadbundle command figures out what the latest Tor Browser
Bundle is (from check.torproject.org), downloads the package for your
operating system and (optionally) extracts it. It has bundled
certificates for torproject.org and checks that the public keys are
the same. It also checks the signature on the downloaded bundle, using
bundled keys for Tor people or (optionally) the current user’s GnuPG
keychain.

To use your own keychain, use --system-keychain (-K). By
default, the command builds a tempdir for GnuPG and imports the
bundled keys (of Tor people who typically sign the release) there.

Use --beta (-b) to download the latest Beta release instead
(if available).

Use --no-extract (-E) if you do not wish to extract the bundle
after downloading. You additionally need backports.lzma installed
for this to work.

If you’re really feeling adventurous, don’t have a system Tor running,
or can’t install txsocksx for some reason, you can (completely
inadvisably) pass --use-clearnet to download over the plain
Internet. Of course, you still get the certificate pins and signature
checking.

Examples

$ carml downloadbundle -e
Getting recommended versions from "https://check.torproject.org/RecommendedTBBVersions".
 3.6-Linux, 3.6-MacOS, 3.6-Windows, 3.6.1-Linux, 3.6.1-MacOS,
 3.6.1-Windows
tor-browser-linux64-3.6.1_en-US.tar.xz.asc: already exists, so not downloading.
tor-browser-linux64-3.6.1_en-US.tar.xz: already exists, so not downloading.
gpg: Signature made Tue 06 May 2014 05:37:07 PM MDT using RSA key ID 63FEE659
gpg: Good signature from "Erinn Clark <erinn@torproject.org>"
gpg: aka "Erinn Clark <erinn@debian.org>"
gpg: aka "Erinn Clark <erinn@double-helix.org>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 8738 A680 B84B 3031 A630 F2DB 416F 0610 63FE E659
Signature is good.
Extracting "tor-browser-linux64-3.6.1_en-US.tar.xz"...
 decompressing...
 20% extracted
 40% extracted
 60% extracted
 80% extracted
 100% extracted
Tor Browser Bundle downloaded and extracted.
To run:
 ./tor-browser_en-US/start-tor-browser

Note that for users who have a valid trust-path to Erinn Clark, using
--system-keychain would avoid the WARNING: from GnuPG.

monitor

This command will print out information about circuits, streams and/or
address mappings, and continue listening for circuit and stream
events. If you just want the current state, use --once to exit
after the initial state is dumped out.

If you don’t want circuits, pass --no-circuits
(-c). Similarily, there are --no-streams (-s),
--no-guards (-g) and --no-addr (-a) options.

For even more information, --verbose (-v).

You can also include log messages by passing --log-level=INFO
(-l).

Examples

$ carml monitor
$ carml monitor --no-guards --log-level=WARN
$ carml monitor -sga

stream

This command is the sister of carml circ, allowing you to view and play with streams.

Currently, you can do one of three things:

	--list (-L) shows you all current streams

	--attach (-a) forces all subsequent streams to attach to a particular circuit-id (until you exit carml with Control-C)

	--close (-d) close a stream

Examples

$ carml circ -L
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Circuits:
 974: BUILT 14 minutes ago carmlfake0->fluxe4->~TorLand1
 975: BUILT 14 minutes ago carmlfake1->bethesdatech->Dontbleed2
$ carml stream --attach 975
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Exiting (e.g. Ctrl-C) will cause Tor to resume choosing circuits.
Attaching all new streams to Circuit 975.
 carmlfake1->bethesdatech->Dontbleed2
 attaching 1719 (resolve encrypted.google.com)
 attaching 1720 encrypted.google.com:443
^C
$

xplanet

This command spits out valid xplanet [http://xplanet.sourceforge.net/] configuartion files for the
“marker” files. If you pass the --execute (-x) argument, a
tempdir is created with a top-level xplanet configuration and xplanet
is run against that (causing a map to appear on your root window).

You can use --all (-A) to output markers for ALL routers
(instead of just ones active for you right now). Note that the
position of many will overlap as we don’t do anything smart when two
co-ordinates are identical.

xplanet can include an arc_file for drawing lines between
relays. With -x or -f this is used to draw links between
relays in a circuit. You can also use --arc-file (-a) if
you’re not using -x or -f.

Warning

Obviously, this could easily leak some information about which
relays and circuits you are currently using. Since your guard-nodes
(first hop of a circuit) are long-lived, it’s advisable to use this
for entertainment purposes mainly, and clear your root window when
done.

Examples

$ carml xplanet -f
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
3 (23%) routers with no geoip information.
xplanet -num_times 1 -projection rectangular -config /tmp/tmp_32oE5/xplanet-config
<Circuit 977 BUILT [redacted IPs] for GENERAL>
<Circuit 977 BUILT [redacted IPs] for GENERAL>
4 (27%) routers with no geoip information.
xplanet -num_times 1 -projection rectangular -config /tmp/tmp_32oE5/xplanet-config
<Circuit 978 BUILT [redacted IPs] for GENERAL>
<Circuit 978 BUILT [redacted IPs] for GENERAL>
5 (29%) routers with no geoip information.
xplanet -num_times 1 -projection rectangular -config /tmp/tmp_32oE5/xplanet-config

cmd

The command named cmd takes the rest of the command-line and sends
it straight to Tor as a control-protocol request (see the torspec
repository [https://gitweb.torproject.org/torspec.git] for full
details). It then prints out the reply from Tor. (This isn’t really
suitable for events; see the events command).

If you pass a single dash as the command-line (that is, carml cmd
-) then commands are read one line at a time from stdin and executed
sequentially.

Examples

$ carml -q cmd getinfo info/names | tail -5
status/version/recommended -- List of currently recommended versions.
stream-status -- List of current streams.
traffic/read -- Bytes read since the process was started.
traffic/written -- Bytes written since the process was started.
version -- The current version of Tor.

$ carml -q cmd SIGNAL NEWNYM
OK

$ echo "getinfo net/listeners/socks" > commands
$ echo "getinfo traffic/read" >> commands
$ echo "getinfo traffic/written" >> commands
$ cat commands | carml -q cmd -
Keep entering keys to run CMD on. Control-d to exit.
net/listeners/socks="127.0.0.1:9050"
traffic/read=6667674
traffic/written=391959

$ carml -q cmd getinfo net/listeners/socks traffic/read traffic/written
net/listeners/socks="127.0.0.1:9050"
traffic/read=10012841
traffic/written=516428

circ

Play with your circuits. You can do a few main actions:

	--list (-L) list the current circuits (similar to carml monitor).

	--build (-b) build a new circuit, either specifying relays by hand or “auto” to let Tor select. You may also use a * as a stand-in for any positional circuit; only Guards will be selected for the first one.

	--delete to delete a circuit (pass --if-unused or -u to only delete it after it’s no longer used).

The ~ characters in the names means that router doesn’t have the “Named” flag.

Examples

$ carml circ --build *,*,AA
Building circuit: ~whatever->~somerandomrouter->~router_with_all_As
Circuit ID 83: ~whatever->~somerandomrouter->~router_with_all_As: built.
$ carml circ --build auto
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Building new circuit, letting Tor select the path.
Circuit ID 982: carmlfake0->ryro->nationalliberal: built.
$ carml circ --build nationalliberal,ryro,nationalliberal
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Circuit ID 983: nationalliberal->ryro: failed (DESTROYED, TORPROTOCOL).
$ carml circl --list
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Circuits:
 977: BUILT 10 minutes ago ~carmlfake0->kasperskytor01->~Unnamed
 978: BUILT 10 minutes ago ~carmlfake0->~Unnamed->persladange2
 982: BUILT a minute ago ~carmlfake0->ryro->~nationalliberal

newid

This basically just runs signal newnym (which you could do with
cmd of course) but also verifies that Tor actually does give
you a new identity (which can fail, as this command is rate-limited).

Usage is simple:

$ carml newid
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
Requesting new identity
success.

events

Simplistic interaction with Tor’s “Events”. This simply subscribes to
the event(s) you list, and prints out the text Tor sends back.

If you only want to listen for a certain number of events, use
--count (-n) with an argument or the special-case --once
for a single event. This might be useful, for example, to determine
when your Tor downloads a new consensus (like the first example, but
use NEWCONSENSUS instead).

Note that the count of events is global; if you listen for 2 different
events with --once, the command will exit after the first event
(i.e. not one of each).

Examples

$ carml -q events --once ADDRMAP
carml.readthedocs.org 162.209.114.75 "2014-06-04 23:47:37" EXPIRES="2014-06-05 05:47:37" CACHED="YES"
$ carml events --count 5 INFO
Connected to a Tor version "0.2.4.21 (git-c5a648cc6f218339)" (status: recommended).
exit circ (length 3): carmlfake0(open) carmlfake1(open) $AA(open)
pathbias_count_use_attempt(): Used circuit 982 is already in path state use succeeded. Circuit is a General-purpose client currently open.
link_apconn_to_circ(): Looks like completed circuit to [scrubbed] does allow optimistic data for connection to [scrubbed]
connection_ap_handshake_send_resolve(): Address sent for resolve, ap socket 14, n_circ_id 2147503826
connection_edge_process_inbuf(): data from edge while in 'waiting for resolve response' state. Leaving it on buffer.

relay

List and find relays. These are based on the current notion of the
consensus that the Tor we’ve connected to has. This comes from
“microdescriptors” that Tor downloads from Directory Authorities
periodically.

Relays are usually referred to by their “hex ID”, a 40-character
representation of the actual (binary) relay ID which itself is a hash
of the relay’s public identity key.

Use carml relay --info to search for a relay by key-ID or its name
(or a subset thereof) and print some information about the relay (or
relays) found.

Sometimes relays can come and go; if you want to wait for a relay with
a particular hex-ID to be in the consensus, use carml relay --await
hex_id. This will either work immediately (if the relay is already
in the consensus) or wait for NEWCONSENSUS events to see if the
relay has appeared yet.

Examples

$ carml relay --list | wc -l
7197
$ carml relay --info [hex id]
 name: [redacted]
 hex id: $[redacted]
 location: XX
 address: [redacted]:9011 (DirPort=9030)
 last published 28 days ago

Development

Write me.

HOWTOs

Pull-requests with other ideas or instructions are encouraged!

Ensure Your Relay Is In Consensus

Let’s say you wanted to ensure that your relay is in each consensus
that’s published (and didn’t wish to use the Tor Weather
web-service). You could use the events sub-command to wait for
a NEWCONSENSUS event and grep through it for your relay’s
fingerprint.

Wrapping this in a while loop would make it run forever.

Releases

master

18.3.0

	October 23, 2018

	fix a few Python3 issues

	OnionOO changed a few result tags

	onion can accept + output private-keys

	fix bug with carml onion not accepting single-port –port correctly

18.2.0

	September 26, 2018

	carml is now Python3-only

	add onion sub-command to add Onion services to a Tor instance

18.1.0

	June 26, 2018

18.0.0

	April 16, 2018

17.4.0

	May 15, 2017

17.3.0 and earlier

	see PyPI [https://pypi.org/project/carml/#historyPyPI]

0.0.0 - 0.0.6

	August 3, 2014

	Initial release. Some issues with PyPI caused my to have to incrememnt the version several times.

Index

checkpypi

This helps you check the hashes for a PyPI requirement, as verifiable by peep [https://github.com/erikrose/peep]. This does the following:

	download the JSON metadata from PyPI via a Tor circuit

	selects the newest version (or what you ask for with –revision)

	creates 3 separate circuits, and downloads the sdist .tar.gz file over each one

	compares the hashes

If any of the hashes are different, it complains. Otherwise, it prints out what you should copy/paste into your requirements.txt file for use with peep.

 _static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 carml

 		
 Installing carml

 		
 PyPI

 		
 Development/Source

 		
 Tor Setup

 		
 General Options

 		
 –connect, -c

 		
 –quiet, -q

 		
 –info, -i

 		
 –color, C

 		
 –timestamps, -t

 		
 –debug, -d

 		
 The Subcommands

 		
 onion

 		
 Examples

 		
 pastebin

 		
 Examples

 		
 copybin

 		
 downloadbundle

 		
 Examples

 		
 monitor

 		
 Examples

 		
 stream

 		
 Examples

 		
 xplanet

 		
 Examples

 		
 cmd

 		
 Examples

 		
 circ

 		
 Examples

 		
 newid

 		
 events

 		
 Examples

 		
 relay

 		
 Examples

 		
 Development

 		
 HOWTOs

 		
 Ensure Your Relay Is In Consensus

 		
 Releases

 		
 master

 		
 18.3.0

 		
 18.2.0

 		
 18.1.0

 		
 18.0.0

 		
 17.4.0

 		
 17.3.0 and earlier

 		
 0.0.0 - 0.0.6

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

